Borrar
Weissman, Karikó y Langer. R. C.
Premio Fronteras del Conocimiento para los creadores de las terapias ARN mensajero

Premio Fronteras del Conocimiento para los creadores de las terapias ARN mensajero

Drew Weissman, Katalin Karikó y Robert Langer han abierto la puerta al desarrollo de vacunas y tratamientos contra múltiples enfermedades

Colpisa

Miércoles, 26 de enero 2022, 12:37

Necesitas ser suscriptor para acceder a esta funcionalidad.

Compartir

El Premio Fundación BBVA Fronteras del Conocimiento en Biología y Biomedicina ha sido concedido en su decimocuarta edición a Katalin Karikó, Robert Langer y Drew Weissman «por sus contribuciones a las terapias de ARN mensajero (ARNm) y a la tecnología de transferencia que permite a nuestras propias células producir proteínas para la prevención y el tratamiento de enfermedades», señala el acta del jurado.

La aplicación más sobresaliente derivada hasta ahora del trabajo de los galardonados es «el desarrollo oportuno y rápido de vacunas contra el SARS-CoV-2», que han demostrado proporcionar «una protección eficaz contra la Covid-19 grave». El jurado destaca que las vacunas que están conteniendo la pandemia son solo el principio de una tecnología «llamada a extenderse a otras áreas terapéuticas, como las enfermedades autoinmunes, el cáncer, los trastornos neurodegenerativos, las deficiencias enzimáticas y otras infecciones víricas», señala el acta.

Karikó y Weissman, bioquímica e inmunólogo respectivamente, y Langer, ingeniero químico, son autores de avances cruciales en la cadena de hallazgos científicos que han convertido en realidad las llamadas terapias de ARN mensajero, una tecnología que logra que sean las propias células del cuerpo las que producen las moléculas con capacidad terapéutica.

Temporalmente, la primera contribución es la de Langer, catedrático del Instituto Tecnológico de Massachusetts (MIT, EE.UU.). En los años setenta del pasado siglo, Langer publicó en la revista Nature el primer trabajo que demostraba que era posible encapsular en nanopartículas moléculas de ácidos nucleicos −como el ARN, siglas de ácido ribonucleico−, y transferirlas al interior del cuerpo. Abría la puerta así a «empaquetar las macromoléculas terapéuticas, incluido el ARNm, de forma que puedan ser transferidas a las células, y que la propia maquinaria de traducción celular sintetice la proteína/antígeno», explica el acta del jurado.

La aportación de Karikó y Weissman, ambos catedráticos en la Universidad de Pensilvania (EEUU), llegó ya entrado el nuevo siglo. Como recoge el acta, «juntos desarrollaron métodos de modificación del ARNm para evitar su destrucción por parte del sistema inmunitario humano», una vez introducido en el organismo. Fue un avance clave.

Sintetizar proteínas

El ADN y el ARN son las moléculas –químicamente son ácidos nucleicos– que contienen la información necesaria para que todo organismo vivo fabrique sus proteínas. El ADN de cada ser vivo es único y está presente en todas sus células. La función del ARN −en términos muy básicos− es copiar la información del ADN y transportarla hasta la maquinaria de la célula que se ocupa de fabricar las proteínas. El concepto de terapia de ARN parte de la base de que es posible diseñar ARN 'a la carta' en el laboratorio, de forma que contenga la información necesaria para fabricar cualquier proteína, ya sea un compuesto terapéutico o, como en las vacunas frente a la Covid-19, un fragmento de un virus. Una vez dentro de la célula, ese ARN sintético será leído por la maquinaria celular, que empezará a producir las proteínas deseadas.

Las vacunas de ARNm contra la Covid-19 contienen ARN con instrucciones para fabricar la proteína S del coronavirus SARS-CoV-2, que es la que actúa como llave para entrar en las células humanas. De esta forma, cuando la vacuna es inyectada, los macrófagos —un tipo de células defensivas del sistema inmune— próximos al lugar del pinchazo ingieren el ARN envuelto en grasa; estas células empezarán a producir la proteína S del virus y colocarla en su membrana externa, para exhibirla al exterior. Esto induce en el organismo una respuesta defensiva como la que se generaría para protegernos de una infección natural del SARS-CoV-2.

Estas vacunas se producen más rápido que las tradicionales, y pueden adaptarse más fácilmente a las mutaciones del virus. También son vacunas teóricamente más seguras, puesto que no interviene en el proceso ningún virus vivo, y ningún material genético entra en el núcleo de la célula humana.

Múltiples aplicaciones

Tras conocer el fallo del jurado, Katalin Karikó ha explicado cómo se siente ahora que el éxito de las vacunas ha colocado su trabajo en un lugar central de la ciencia: «Durante 40 años no solo no recibí ningún premio, sino que no recibí ningún apoyo económico para mi investigación, así que este reconocimiento es un gran honor. Quiero aprovechar que estoy bajo los focos de los medios para animar a los jóvenes a dedicarse a la ciencia, porque es apasionante».

Como ha explicado el propio Weissman tras conocer el fallo, «nuestra hipótesis central cuando empezamos este trabajo fue que el ARN sería un sistema mejor para transferir proteínas al organismo, porque convertiría al propio cuerpo receptor en la fábrica que produce la terapia. El problema que nos encontramos es que el ARN era enormemente inflamatorio, y el animal al que se lo inyectábamos se ponía enfermo, así que Katalin y yo estuvimos muchos años intentando averiguar la causa de este problema, y fue así como conseguimos nuestro hallazgo principal: un método para evitar la reacción inflamatoria del ARN. Esto además tuvo el efecto de incrementar la cantidad de proteína que se producía, lo cual fue una gran ventaja adicional».

El objetivo inicial, sin embargo, no era desarrollar una vacuna, ha explicado Karikó. «Mi objetivo era utilizar el ARNm para codificar una proteína terapéutica que se pudiera administrar a un paciente con un ictus o un infarto de miocardio porque yo trabajaba en el campo de la cardiología y la neurocirugía, y quería evitar que se produjera una inflamación que pudiera empeorar la situación del enfermo».

Un «ejemplo de perseverancia»

Langer también se había enfrentado décadas atrás al mismo escepticismo que Karikó. Antes de que en 1974 lograra crear micro- y nanopartículas para encapsular grandes moléculas «la gente no creía que fuera posible», ha recordado tras conocer el fallo del jurado. «Incluso después de publicado el resultado mucha gente me dijo que estaba mal, no lo creían. Los primeros nueve proyectos de investigación que solicité fueron rechazados, y no pude conseguir un trabajo en un departamento de ingeniería química, que es mi disciplina». Langer se incorporó al MIT como profesor de Bioquímica Nutricional en 1978.

Su tecnología, sin embargo, ha resultado «absolutamente crítica» −afirma− para las terapias de ARNm. «Si el ARN se inyectara directamente, simplemente se destruiría. En cambio al ponerlo en estas pequeñas partículas lo proteges cuando lo inyectas en el cuerpo, y así sobrevive para poder trabajar». Además, las partículas pueden modular la velocidad a la que se administra el ARN y en algunos casos también el lugar del cuerpo al que es transferido. «Esto permite un suministro muy preciso», explica.

Reporta un error en esta noticia

* Campos obligatorios